
How To Engineer Big Data
not in the cloud
By Hayden & Alyssa
9am on Tues 2/28/2022



Talk Outline
1. Who are we? (Both)
2. How do you make code that is legible and ready for change? (Hayden)
3. How do you use git/keep track of changes? (Hayden)
4. What does a good coding workflow look like? (Alyssa)
5. How do you make a data pipeline? (Alyssa)
6. What tools are out there to help me deal with data? (Alyssa)
7. Q & A (Both)



Who Are We?



Making Code that is Legible & Ready 
for Change



Using Git & Keeping Track of Changes



A Good Coding Workflow



What makes a coding workflow good?

(big ol’ disclaimer that this is all my opinion)

- Other people should be able to read & use your end product.
- You should be able to understand & alter your end product if you put it 

down for a year.
- The end product should work in the way you expect it to (and you should 

have ways to guarantee or test that)



Don’t Write Spaghetti!

- Spaghetti code contains confusing functions, opaque references, and few 
comments. It’s tangled! It’s messy! There’s sauce flying everywhere!

- You might be able to understand your spaghetti code, and maybe it’s fine 
for a one-off testing script, but sometimes you want to write lasagna 
instead.



Here’s Some Spaghetti That I Wrote

What makes this spaghetti? 
How can I do better?



Make Lasagna

I know this metaphor isn’t perfect, but lasagna has layers that are more or less 
aligned. There’s sauce and cheese between them. It’s less chaotic. You know 
what to expect between the layers.

There are good practices and automated tools to help you make lasagna. 

Hayden’s covered some of them, but I’ll run through a few practices & tools for 
you!



Practices For Making Lasagna

- Plan out your module/the structure of what you’re trying to do ahead of 
time. (yes, actually draw pictures)

- Break up your code into functions and/or classes when possible. Helps 
with reusability.

- Write docstrings! And comments where they might be needed!
- Keep track of the packages you’re using and what versions they are. Also 

write down any expectations about the data you’re using.
- Review each other’s code if you’re making major changes (this is why pull 

requests exist!) and run test suites!



Here’s Some OK Code I Wrote

What did I do right? 
What could be better?



Tools For Making Lasagna

- pip: pip is a package manager. You can get a list of the packages in your 
environment with the command pip freeze, and make a file of 
requirements for others to use with pip freeze > requirements.txt. 

- venv: virtual environments allow you to have separate dependencies for 
each project. Make one for each project: virtualenv project_name

- Linters: linters make sure that your code doesn’t have any obvious bugs 
and style errors. If you’re worried about adding bugs, a linter can add some 
peace of mind.

- Auto-formatters: format your code so that (e.g.) multi-line function calls 
are readable and not ugly. A good one for Python is called black. 

https://learnpython.com/blog/python-requirements-file/
https://docs.python.org/3/library/venv.html
https://realpython.com/python-code-quality/#linters
https://black.readthedocs.io/en/stable/


More Tools For Making Lasagna

- pytest: standard testing library for Python (iirc). Has a good deal of 
functionality and is user-friendly.

- mock: lets you make fake versions of APIs or other functions to isolate 
modules you need to test. 

- github actions: you can set these up to run a linter and/or a test suite when 
someone pushes code to your repository. You can also make a git hook, 
but that’s a bit more involved.

https://docs.pytest.org/en/7.2.x/
https://docs.python.org/3/library/unittest.mock.html
https://docs.github.com/en/actions/learn-github-actions/understanding-github-actions
https://github.com/marketplace/actions/super-linter
https://stackoverflow.com/questions/61618486/git-pre-push-hook-run-test-on-each-new-commit


A Process I Try To Follow

1. Figure out what I’m doing; draw a picture and set up skeleton functionality.
2. Fill in the functionality, testing as I go. Establish input and output ee



Data Pipelines



Tools For Dealing With Data


